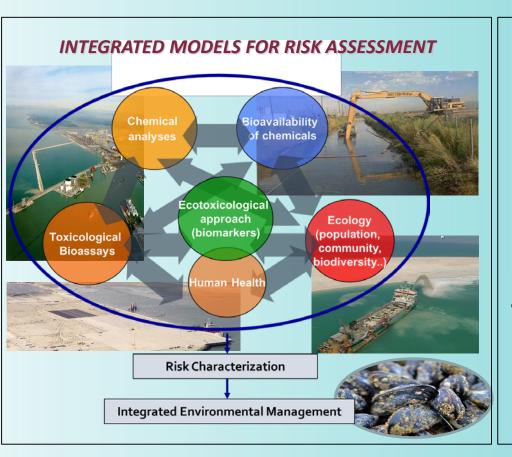


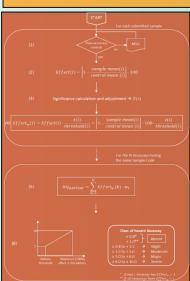
MONITOOL PROJECT

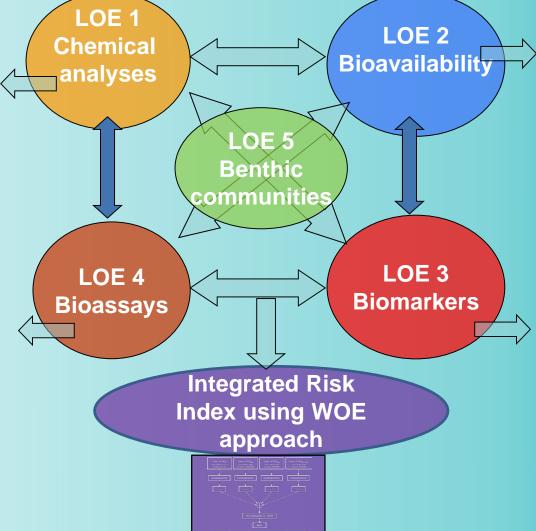
DGT as a Tool to be Included in the Weight of Evidence (WOE)
Approaches for Ecological Risk
Assessment (ERA) in Marine
Environments

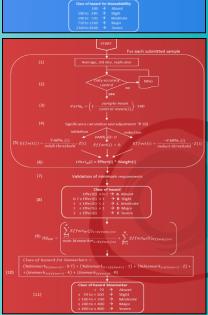
Francesco Regoli (Università Politecnica


David Pellegrini (ISPRA Livorno)

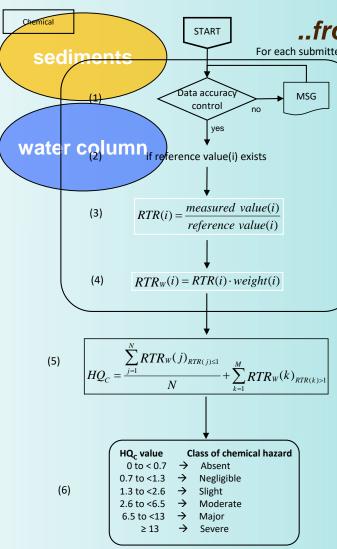
Weight Of Evidence (WOE) approaches for risk assessment in the marine environment: definition of weighted criteria for elaboration of individual Lines Of Evidence (LOEs)


CRITICAL ISSUES IN RISK ASSESSMENT


- Interpretation and significance of complex datasets of heterogeneous results
- Qualitative and quantitative evaluations: indices and scales development
- Integration of different typologies of data
- Synthetic risk characterization/communication



Quantitative risk assessment model based on Weight of Evidence (WOE) approach LOE 1 LOE 2 Chemical **Bioavailability** analyses OE 5 **Benthic** communities



Elaboration of chemical characterization in abiotic matrices

..from pass-to-fail approach to weighted criteria

- -Calculation for each parameter concentration of the <u>Ratio To</u> <u>Reference</u>, RTR
- -Correction for <u>typology of pollutants</u> (i.e. hazardous or priority), RTR*p*
- <u>Cumulative HQ</u> differently weights for parameters with RTR<1 and those with RTR>1
- <u>Classification of HQ</u> in 1 of 5 classes of hazard (absent-negligible, slight, moderate, major, severe)

1	Longitude	Area	Site	Date	Sampling code	Core code	Level code	Sample code	As	Ba	Be	Cd	C
2	8,922483	Genova	Diga foranea imboccatura levante	13/12/2018	GR-GE-I-SE-01			GR-GE-I-SE-01	8,78078			0,7403	15
3	8,919	Genova	Porto antico	13/12/2018	GR-GE-I-SE-02			GR-GE-I-5E-02	5,6098			0,3424	46
4	8,875117	Genova	Foce Polcevera	13/12/2018	GR-GE-I-SE-03			GR-GE-I-SE-03	10,4238			0,4689	13
5	8,933853	Genova	Diga foranea imboccatura levante	16/05/2019	GR-GE-II-SE-01			GR-GE-II-SE-01	8,03118			0,4367	/9
6	8,921642	Genova	Porto antico	16/05/2019	GR-GE-II-SE-02			GR-GE-II-SE-02	13,9585			0,4095	52
7	8,874175	Genova	Foce Polcevera	16/05/2019	GR-GE-II-SE-03			GR-GE-II-SE-03	5,45135			0,3711	15
8	9,849547	La Spezia	Molo Fornelli	20/11/2017	MF1			MF1					
9	9,849579	La Spezia	Molo Fornelli	20/11/2017	MF2			MF2					
10	9,849583	La Spezia	Molo Fornelli	20/11/2017	MF3			MF3					
11	9,849546	La Spezia	Molo Fornelli	20/11/2017	MF4			MF4					
12	9,84578	La Spezia	Tra Molo garibaldi e Molo Fornelli	14/05/2019	GR-SP-II-SE-01			GR-SP-II-SE-01	23,7409			0,08	64

REFERENCE VALUES (Marine sediments)

L1 (DM 173/2016) L2 (DM 173/2016)

ERL (Effect Range Low) (Long et al., 1995)

ERM (Effect Range Median) (Long et al., 1995)

TEL (Threshold Effect Level) (Mac Donald, 1994, Long et al. (1995)

PEL (Probable Effect Level) (Mac Donald, 1994, Long et al. (1995) SQA (D. Lgs 172/2015).

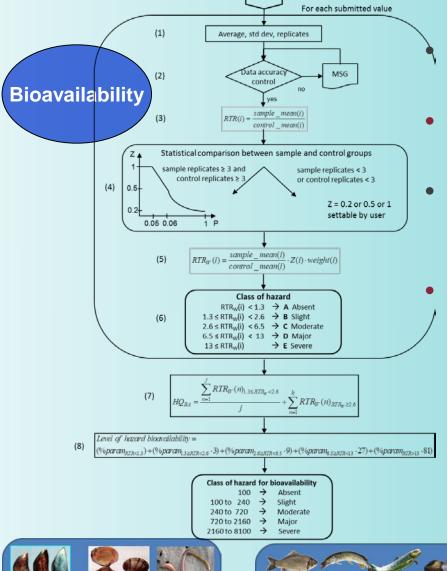
SL/SQHV (ANZECC, 2009)

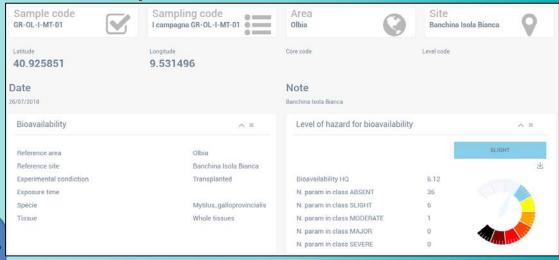
Column A, (Allegato 5, parte IV, Titolo V, D. Lgvo 152/2006)

Column B ("...")

EASY TO UPDATE WITH OTHER REFERENCES

NORMATIVES AND SEDIMENT QUALITY GUIDELINES
EASY TO UPDATE WITH OTHER REFERENCES

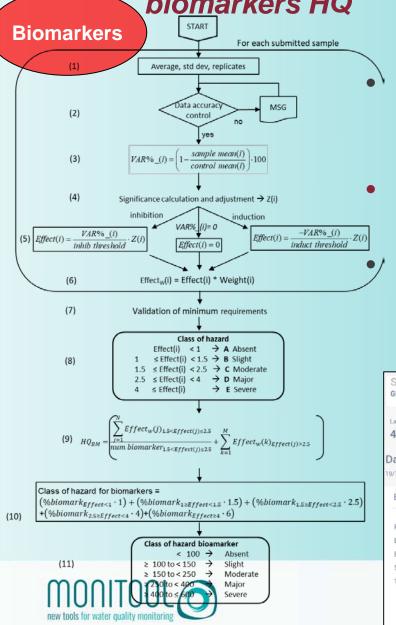

- HQ value
- Maximum % contribution given to HQ by a single analyte
- n. parameters exceeding the reference
- n. parameters with a reference
 - n. analyzed parameters
 - class of chemical hazard

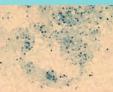

Flow chart and aculation of bioavailability HQ

Calculation for each analyte of <u>increased concentration</u>, corrected for <u>weight</u> and <u>statistical significance</u> (RTRW)

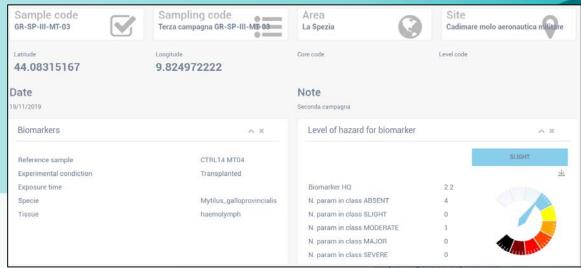
- Assignment of each parameter to 1 of 5 classes of effect (absent, slight, moderate, major, severe)
- The cumulative HQ <u>differently weights</u> these parameters according to the entity of variation (is not an average)

Level of cumulative HQ is summarized by the % distribution of parameters in the classes of effect



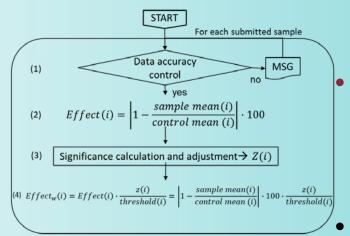


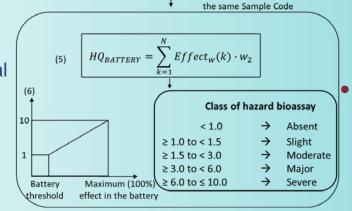
Flow chart and calculation of biomarkers HQ



For each biomarker, the variation is compared to Threshold, corrected for statistical significance and importance of biomarker (weight)

Assignment of each biomarker response to 1 of 5 classes of effect


Calculation and classification of cumulative HQ in a level of hazard according to % distribution of biomarkers in the 5 classes

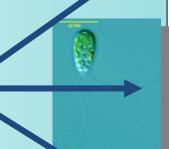

Flow chart and calculation of bioassays HQ

LOE 5 Bioassays

- Species
- Matrix
- Endpoint
- Experimental conditions

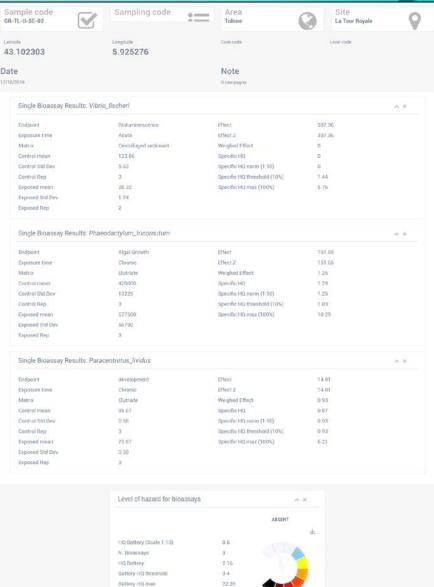
For the N bioassays having

- Each bioassay has a <u>Weight</u> depending on the biological endpoint, and a <u>Threshold</u> based on tested matrix, time of exposure, hormesis
- Variation of each bioassay is compared to its Threshold, corrected for the <u>statistical</u> <u>significance</u> and the <u>weight</u> of the assay
- A <u>cumulative HQ</u> for the battery is calculated by the summation of each effect vs the threshold of the battery

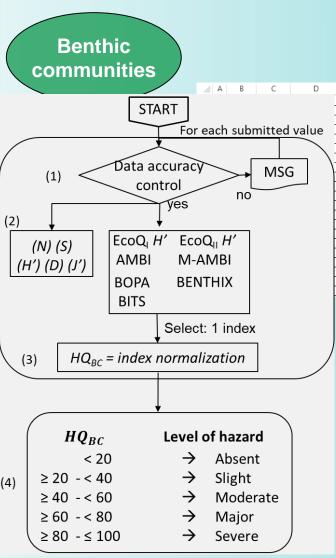


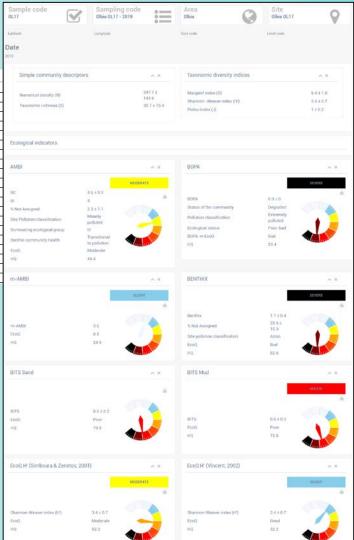
Output Module bioassays

Bioassays


Single Bioassay Results

Level of hazard for bioassays





Example of elaboration and data output

Cardiidae

Lucinidae

Kelliidae

Priapulidae

Montacutidae

137,9

34,5

Dosinia lupinus

Loripes lacteus

Nematoda

Priapulus sp.

Mysella bidentata

Kellia suborbicularis

N

Polichaeta

Crustacea

Crustacea

Holoturidea

Class

gine Phylum

Anellida

Anellida

Anellida

Anellida

Anellida

Anellida

Anellida

Anellida

Anellida

Antropoda

Antropoda

Mollusca

Mollusca

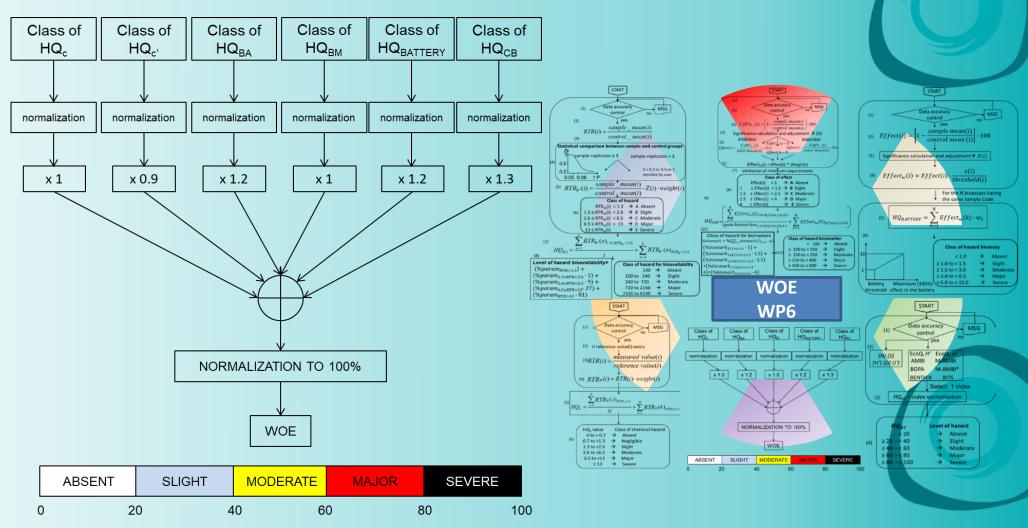
Mollusca

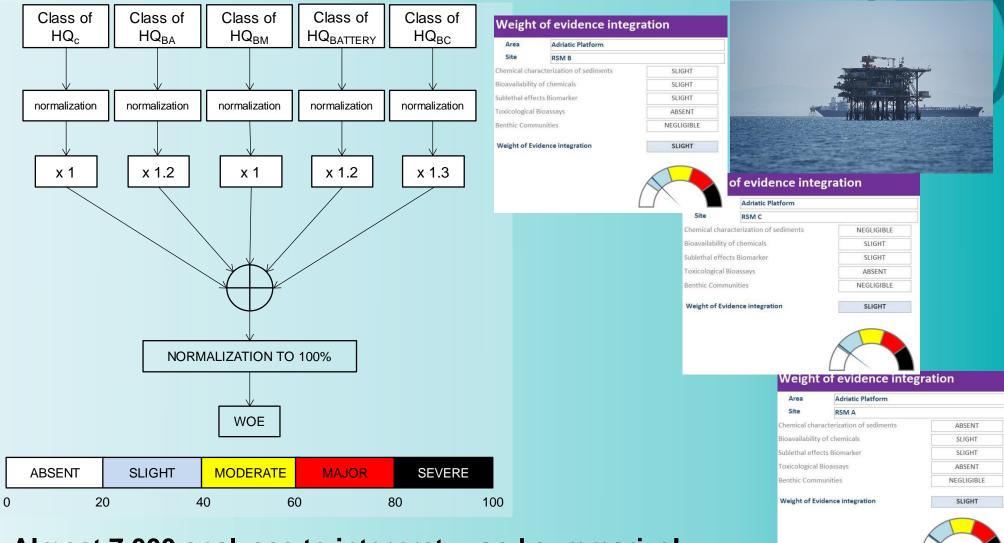
Mollusca

Mollusca

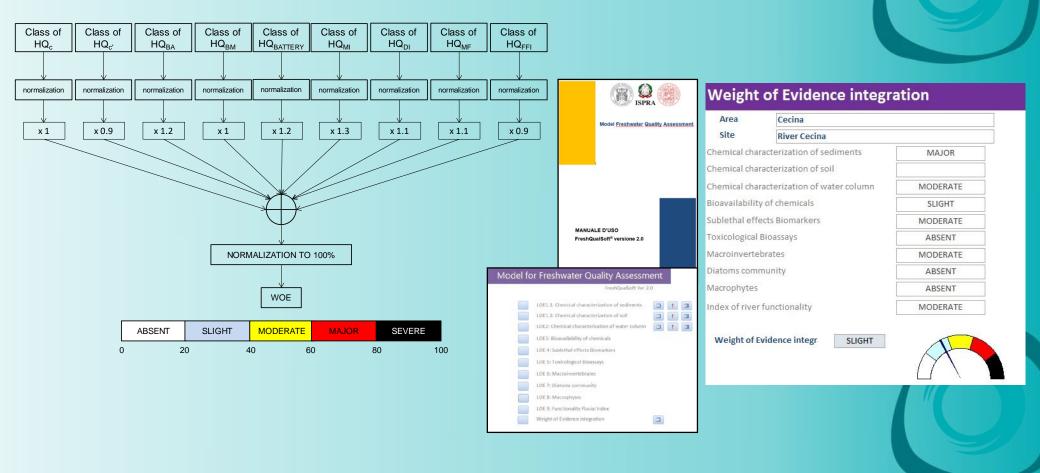
Nematoda

Prialupida




Integration of various LOEs into WOE and class of Risk

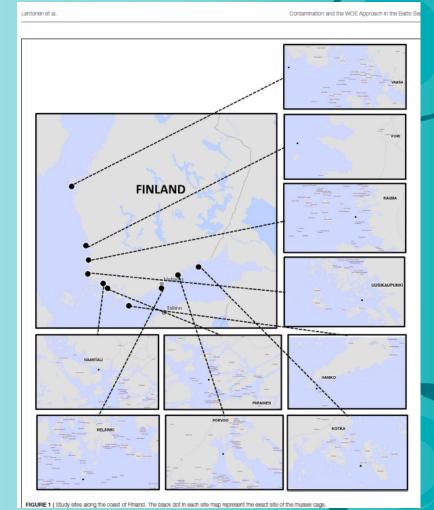
WOE for monitoring complex scenarios



Almost 7.000 analyses to interpret....and summarize!

Validation of Weight of Evidence (WOE) model for freshwater environments

ORIGINAL RESEARCH published: 15 November 2019 doi: 10.3389/fmars.2019.00688


Mussel Caging and the Weight of Evidence Approach in the Assessment of Chemical Contamination in Coastal Waters of Finland (Baltic Sea)

Kari K. Lehtonen ^{1*}, Giuseppe d'Errico², Samuli Korpinen ¹, Francesco Regoli², Heidi Ahkola³, Tanja Kinnunen ¹ and Anu Lastumāki ¹

onen et al. Confamination and the WOE Approach in the Baltic Sea

Site	Chemical characterization	HQ: 63.417 Major BaP-DBahA- BKF; PER	HQ: 4.229 Moderate CAT-GST	Benthic communities HQ: 67.174 Major	Near-bottom oxygen Absent	Eutrophication	Weight of Evidence Integration		
Kotka	HQ: 0.284 Absent					Major	MODERATE		
Porvoo	HQ: 0.311 Absent	HQ: 63.030 Major ANT-FLU; PER	HQ: 4.642 Moderate GST-LPO- CAT; GR	HQ: 46.078 Moderate	Slight	Major	MODERATE		
Heisinki	HQ: 2.271 Slight 100% Zn	HQ: 14.842 Slight	HQ: 2.517 Moderate -; GST	HQ: 31.326 Slight	Absent	Major	SLIGHT		
Hanko	HQ: 0.28 Absent	HQ: 29.925 Moderate -; 1-MetNAPH	HQ: 2.714 Moderate GR-GST; -	HQ: 46.377 Moderate	Absent	Moderate	SUGHT		
Parainen	HQ: 1.7 Slight 100% Zn	HQ: 59.329 Major BbF-BaP; PER	HQ: 2.008 Slight LPO;-	HQ: 48.291 Moderate	Absent	Major	MODERATE		
Naantali	HQ: 2.829 Moderate 100% Zn	HQ: 80.710 Major FLU; PER- OSn	HQ: 2.402 Moderate GST-CAT; -	HQ: 49.020 Moderate	Absent	Major	MODERATE		
Uusikaupunki	HQ: 1.566 Slight 100% Zn	HQ: 1.985 Slight	HQ:2.42 Moderate CAT-GST; -	HQ: 9.520 Absent	Slight	Moderate	SUGHT		
Rauma	HQ: 6.18 Moderate 81.5% Zn	HQ: 64.589 Major -; PER-BaP	HQ: 2.125 Slight CAT; -	HQ: 33.676 Slight	Absent	Moderate	MODERATE		
Port	HQ: 0.293 Absent	HQ: 0 Absent	HQ: 0 Absent	HQ: 50.986 Moderate	Absent	Slight	SUGHT		
Vaasa	HQ: 2.199 Slight 100% Zn	HQ: 4.296 Slight	HQ: 1.0 Slight	HQ: 59.938 Moderate	Absent	Slight	SUGHT		

Hazard Quotient (FIQ) is provided for chemical characterization of seawater (showing the percentage of the parameter contributing most to the HQ), bioavailability (parameters showing major or seawate effects), historicles (parameters showing moderate or major effects), and benthis communities.

