MONITOOL: New tools for monitoring the chemical status in transitional and coastal waters under the Water Framework Directive

Martin Nolan, Isabelle Amrouche, Hahki Atrata, Maria Jesus Belzunce Segarra, Alberto Bliasco Lorenzo, Thi.Bolam, Miguel Caetano, Margarida Maria Correia dos Santos Rrome, Darragh Cunningham, Vanessa Alhililin Gabet, Brendan McHugh, Daniel Markel, Enrique Moreno Deos, Susana Runia, Olivier Perceval, Fiona Regan, Craig Robinson, Marco Schiuto, Blainaid White

Introduction

Heavy metals, such as nickel, cadmium, and lead, can have toxic effects when accumulated within organisms. As such, the EU has designated these metals “priority substances” in revisions of the Water Framework Directive, and their monitoring in marine environments is essential. At present, the EU monitors these metals by biota sampling, a method which involves the killing of fish or other marine organisms to sample for presence of metals in body tissue. The MONITOOL Project aims to prove the effectiveness of passive sampling devices in the marine monitoring of priority metals. Devices called Diffusive Gradient in Thin Film (DGT) passive samplers allow for the accumulation of metals over time when immersed in solution, and have been applied in studies of metal contamination since their invention in 1995. The MONITOOL Project incorporates 17 partners from 8 European countries, performing DGT deployments along the North Atlantic coast at coastal and estuary sites for five days, alongside water sampling to compare results. The Project aims to redefine the EU regulations on priority metal sampling to allow the use of these passive sampling devices in place of biota sampling.

DGT Devices

DGTs continuously accumulate metals when immersed in solution. The binding layer draws metal into the device and binds them for subsequent analysis to determine time weighted average concentrations. This layer is separated from solution by a diffusive layer to slow binding, and a membrane filter to prevent large particles entering the gel layers. These layers are encased in a hard non-leaching plastic to protect from abrasive damage of the gel.

Diagram of the DGT's design

DGTs before deployment in Perspex holder.

Analysis

The MONITOOL Project minimises variation in results by having a single project partner carry out specific work packages. The devices are sent to French laboratory IFREMER where the binding layer is isolated and the metals are removed by immersion in nitric acid, and this sample is then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Spot water samples are analysed by two methods (ICP-MS and voltammetry) to validate the passive sampling method.

DCU analyzes the devices for biofouling- the buildup of organisms on the surface of the membrane. This involves microscopy to identify individual primary fouling species, as well as protein and carbohydrate content analysis to estimate the extent of fouling.

Learn More About MONITOOL

For news, media, and further information on the Project

www.monitoolproject.eu

References

3. MONITOOL Project Website, Instituto Tecnología do Canarias, www.monitoolproject.eu/partnerList (last accessed 10/04/17)

Disclaimer

This project (contract: EPA_F_565/2016) is co-financed by the European Regional Development Fund through the Interreg Atlantic Area Programme. The present work reflects only the author’s view and the funding Programme cannot be held responsible for any use that may be made of the information it contains.